Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6574, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503865

RESUMO

Cell cycle-dependent protein kinase 12 (CDK12) plays a key role in a variety of carcinogenesis processes and represents a promising therapeutic target for cancer treatment. However, to date, there have been no systematic studies addressing its diagnostic, prognostic and immunological value across cancers. Here, we found that CDK12 was significantly upregulated in various types of cancers, and it expression increased with progression in ten cancer types, including breast cancer, cholangiocarcinoma and colon adenocarcinoma. Moreover, the ROC curves indicated that CDK12 showed diagnostic value in eight cancer types. High CDK12 expression was associated with poor prognosis in eight types of cancer, including low-grade glioma, mesothelioma, melanoma and pancreatic cancer. Furthermore, we conducted immunoassays to explore the exact mechanisms underlying CDK12-induced carcinogenesis, which revealed that increased expression of CDK12 allowed tumours to evade immune surveillance and upregulate immune checkpoint genes. Additionally, mutational studies have shown that amplification and missense mutations are the predominant mutational events affecting CDK12 across cancers. These findings establish CDK12 as a significant biological indicator of cancer diagnosis, prognosis, and immunotherapeutic targeting. Early surveillance and employment of CDK12 inhibitors, along with concomitant immunotherapy interventions, may enhance the clinical outcomes of cancer patients.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Humanos , Proteínas Quinases , Quinases Ciclina-Dependentes/metabolismo , Prognóstico , Carcinogênese , Biomarcadores Tumorais/metabolismo , Imunomodulação/genética
2.
Int J Biol Sci ; 20(5): 1669-1687, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481813

RESUMO

Direct tubular injury caused by several medications, especially chemotherapeutic drugs, is a common cause of AKI. Inhibition or loss of cyclin-dependent kinase 12 (CDK12) triggers a transcriptional elongation defect that results in deficiencies in DNA damage repair, producing genomic instability in a variety of cancers. Notably, 10-25% of individuals developed AKI after treatment with a CDK12 inhibitor, and the potential mechanism is not well understood. Here, we found that CDK12 was downregulated in the renal tubular epithelial cells in both patients with AKI and murine AKI models. Moreover, tubular cell-specific knockdown of CDK12 in mice enhanced cisplatin-induced AKI through promotion of genome instability, apoptosis, and proliferative inhibition, whereas CDK12 overexpression protected against AKI. Using the single molecule real-time (SMRT) platform on the kidneys of CDK12RTEC+/- mice, we found that CDK12 knockdown targeted Fgf1 and Cast through transcriptional elongation defects, thereby enhancing genome instability and apoptosis. Overall, these data demonstrated that CDK12 knockdown could potentiate the development of AKI by altering the transcriptional elongation defect of the Fgf1 and Cast genes, and more attention should be given to patients treated with CDK12 inhibitors to prevent AKI.


Assuntos
Injúria Renal Aguda , Fator 1 de Crescimento de Fibroblastos , Humanos , Camundongos , Animais , Fator 1 de Crescimento de Fibroblastos/genética , Quinases Ciclina-Dependentes/genética , Rim , Injúria Renal Aguda/induzido quimicamente , Instabilidade Genômica
3.
Cell Death Dis ; 14(5): 339, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37225700

RESUMO

The transcription factor hypoxia-inducible factor-1α (HIF-1α), as a master regulator of adaptive responses to hypoxia, possesses two transcriptional activation domains [TAD, N-terminal (NTAD), and C-terminal (CTAD)]. Although the roles of HIF-1α NTAD in kidney diseases have been recognized, the exact effects of HIF-1α CTAD in kidney diseases are poorly understood. Here, two independent mouse models of hypoxia-induced kidney injury were established using HIF-1α CTAD knockout (HIF-1α CTAD-/-) mice. Furthermore, hexokinase 2 (HK2) and mitophagy pathway are modulated using genetic and pharmacological methods, respectively. We demonstrated that HIF-1α CTAD-/- aggravated kidney injury in two independent mouse models of hypoxia-induced kidney injury, including ischemia/reperfusion-induced kidney injury and unilateral ureteral obstruction-induced nephropathy. Mechanistically, we found that HIF-1α CTAD could transcriptionally regulate HK2 and subsequently ameliorate hypoxia-induced tubule injury. Furthermore, it was found that HK2 deficiency contributed to severe renal injury through mitophagy inhibition, while mitophagy activation using urolithin A could significantly protect against hypoxia-induced kidney injury in HIF-1α C-TAD-/- mice. Our findings suggested that the HIF-1α CTAD-HK2 pathway represents a novel mechanism of kidney response to hypoxia, which provides a promising therapeutic strategy for hypoxia-induced kidney injury.


Assuntos
Hexoquinase , Subunidade alfa do Fator 1 Induzível por Hipóxia , Traumatismo por Reperfusão , Animais , Camundongos , Modelos Animais de Doenças , Hexoquinase/genética , Hipóxia/complicações , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Rim , Mitofagia , Ativação Transcricional
4.
Inflamm Res ; 72(5): 1051-1067, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37039838

RESUMO

BACKGROUND: Tubulointerstitial inflammation (TII) is a critical pathological feature of kidney disease leading to renal fibrosis, and its treatment remains a major clinical challenge. We sought to explore the role of quercetin, a potential exosomes inhibitor, in exosomes release and TII. METHODS: The effects of quercetin on exosomes release and TII were examined by two TII mouse models: the unilateral ureteral obstruction (UUO) models and the LPS-induced mouse models. In vitro, exosomes-mediated crosstalk between tubular epithelial cells (TECs) and macrophages was performed to investigate the mechanisms by which quercetin inhibited exosomes and TII. RESULTS: In this study, we found that exosomes-mediated crosstalk between TECs and macrophages contributed to the development of TII. In vitro, exosomes released from LPS-stimulated TECs induced increased expression of inflammatory cytokines and fibrotic markers in Raw264·7 cells and vice versa. Interestingly, heat shock protein 70 (Hsp70) or Hsp90 proteins could control exosomes release from TECs and macrophages both in vivo and in vitro. Importantly, quercetin, a previously recognized heat shock protein inhibitor, could significantly reduce exosomes release in TII models by down-regulating Hsp70 or Hsp90. Quercetin abrogated exosomes-mediated intercellular communication, which attenuated TII and renal fibrosis accordingly. CONCLUSION: Quercetin could serve as a novel strategy for treatment of tubulointerstitial inflammation by inhibiting the exosomes-mediated crosstalk between tubules and macrophages.


Assuntos
Exossomos , Quercetina , Camundongos , Animais , Quercetina/farmacologia , Quercetina/uso terapêutico , Exossomos/metabolismo , Lipopolissacarídeos/farmacologia , Inflamação/metabolismo , Macrófagos/metabolismo , Fibrose , Células Epiteliais/metabolismo , Túbulos Renais/metabolismo , Túbulos Renais/patologia
5.
Prostaglandins Other Lipid Mediat ; 167: 106732, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37044156

RESUMO

OBJECTIVE: This study aimed to explore the clinical significance of fatty acid transport-related protein (FATRP) in patients with clear cell renal cell carcinoma(ccRCC). METHODS: RNA-seq data and corresponding clinical data of ccRCC were obtained from TCGA data portal. Seventeen key FATRP genes were comprehensively investigated using bioinformatics approaches to systematically investigate their expression patterns in ccRCC. In addition, the correlation between the expression levels of these genes and clinicopathological features in ccRCC was further explored. RESULTS: Among the 17 key FATRP genes, only FABP5, FABP6, and FABP7 could be regarded as ideal biomarkers for ccRCC, as they were highly expressed in ccRCC tumor tissues, and positively correlates with tumor progression and poor prognosis. FABP6 had the highest copy number variations (CNV) events (63.07 %), and ccRCC patients with FABP6 amplification had a better prognosis than the unaltered group. DNA methylation levels of FABP6 and FABP7 were downregulated in ccRCC tumor tissues compared to those in normal tissues. FABP5 showed the opposite results. Moreover, a novel four FATRP gene (FABP1, FABP5, FABP7, FATP2) and three clinical parameter (age, stage, and grade) prediction model was constructed and that comprised a significant independent prognostic signature. CONCLUSIONS: Only a few FATRP genes are upregulated in ccRCC tumor tissue, and positively correlate with tumor progression and poor prognosis. The accuracy of a single gene of these FATRP genes as predictors of progression and prognosis of ccRCC is limited. The performance of the novel prediction model proposed by this study was much better than that of any single gene.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/metabolismo , Variações do Número de Cópias de DNA , Prognóstico , Ácidos Graxos , Proteínas de Ligação a Ácido Graxo/genética
6.
Sci Rep ; 12(1): 16550, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192453

RESUMO

Skeletal muscle atrophy is prevalent and remarkably increases the risk of cardiovascular (CV) events and mortality in hemodialysis (HD) patients. However, whether diaphragm dysfunction predicts clinical outcomes in HD patients is unknown. This was a prospective cohort study of 103 HD patients. After assessment of diaphragm function by ultrasonography and collection of other baseline data, a 36-month follow-up was then initiated. Participants were divided into diaphragm dysfunction (DD+) group and normal diaphragm function (DD-) group, according to cutoff value of thickening ratio (i.e. the change ratio of diaphragm thickness) at force respiration. The primary endpoint was the first nonfatal CV event or all-cause mortality. A secondary endpoint was less serious CV events (LSCEs, a composite of heart failure readmission, cardiac arrhythmia or myocardial ischemia needed pharmacological intervention in hospital). 98 patients were eligible to analysis and 57 (58.16%) were men. 28 of 44 patients(63.64%) in DD+ group and 23 of 54 patients (42.59%) in DD- group had at least one nonfatal CV event or death (p = 0.038). Compared to DD- group, DD+ group had significantly higher incidence of LSCEs (21 vs.14, p = 0.025) and shorter survival time (22.02 ± 12.98 months vs. 26.74 ± 12.59 months, p = 0.046). Kaplan-Meier analysis revealed significantly higher risks of primary endpoint (p = 0.039), and LSCEs (p = 0.040) in DD+ group. Multivariate hazard analysis showed that DD+ group had significantly higher risk of primary endpoint [hazard ratio (HR) 1.59; 95% confident interval (CI) 1.54-1.63], and LSCEs (HR 1.47; 95%CI 1.40-1.55). Ultrasound-assessed diaphragm dysfunction predicts clinical outcomes in HD patients.Trial registration: This study was registered with Chinese Clinical Trials Registry ( www.chictr.org.cn ) as ChiCTR1800016500 on Jun 05, 2018.


Assuntos
Diafragma , Diálise Renal , Diafragma/diagnóstico por imagem , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Estudos Prospectivos , Diálise Renal/efeitos adversos , Ultrassonografia
7.
Theranostics ; 12(10): 4753-4766, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832084

RESUMO

Rationale: Cisplatin nephrotoxicity is an important cause of acute kidney injury (AKI), limiting cisplatin application in cancer therapy. Growing evidence has suggested that genome instability, telomeric dysfunction, and DNA damage were involved in the tubular epithelial cells (TECs) damage in cisplatin-induced AKI (cAKI). However, the exact mechanism is largely unknown. Methods: We subjected miR-155-/- mice and wild-type controls, as well as HK-2 cells, to cAKI models. We assessed kidney function and injury with standard techniques. The cell apoptosis and DNA damage of TECs were evaluated both in vivo and in vitro. Telomeres were measured by the fluorescence in situ hybridization. Results: The expression level of miR-155 was upregulated in cAKI. Inhibition of miR-155 expression protected cisplatin-induced AKI both in vivo and in vitro. Compared with wild-type mice, miR-155-/- mice had reduced mortality, improved renal function and pathological damage after cisplatin intervention. Moreover, inhibition of miR-155 expression attenuated TECs apoptosis and DNA damage. These protective effects were caused by increasing expression of telomeric repeat binding factor 1 (TRF1) and cyclin-dependent kinase 12 (CDK12), thereby limiting the telomeric dysfunction and the genomic DNA damage in cAKI. Conclusion: We demonstrated that miR-155 deficiency could significantly attenuate pathological damage and mortality in cAKI through inhibition of TECs apoptosis, genome instability, and telomeric dysfunction, which is possibly regulated by the increasing expression of TRF1 and CDK12. This study will provide a new molecular strategy for the prevention of cAKI.


Assuntos
Injúria Renal Aguda , Dano ao DNA , MicroRNAs , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/prevenção & controle , Animais , Apoptose/efeitos dos fármacos , Cisplatino/toxicidade , Células Epiteliais/efeitos dos fármacos , Instabilidade Genômica , Genômica , Hibridização in Situ Fluorescente , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Telômero/metabolismo
9.
Mol Ther ; 30(10): 3300-3312, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35581939

RESUMO

Cyclin-dependent kinase 12 (CDK12) plays a critical role in regulating gene transcription. CDK12 inhibition is a potential anticancer therapeutic strategy. However, several clinical trials have shown that CDK inhibitors might cause renal dysfunction and electrolyte disorders. CDK12 is abundant in renal tubular epithelial cells (RTECs), but the exact role of CDK12 in renal physiology remains unclear. Genetic knockout of CDK12 in mouse RTECs causes polydipsia, polyuria, and hydronephrosis. This phenotype is caused by defects in water reabsorption that are the result of reduced Na-K-2Cl cotransporter 2 (NKCC2) levels in the kidney. In addition, CKD12 knockout causes an increase in Slc12a1 (which encodes NKCC2) intronic polyadenylation events, which results in Slc12a1 truncated transcript production and NKCC2 downregulation. These findings provide novel insight into CDK12 being necessary for maintaining renal homeostasis by regulating NKCC2 transcription, which explains the critical water and electrolyte disturbance that occurs during the application of CDK12 inhibitors for cancer treatment. Therefore, there are safety concerns about the clinical use of these new anticancer drugs.


Assuntos
Antineoplásicos , Simportadores , Animais , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Eletrólitos , Rim/metabolismo , Camundongos , Membro 1 da Família 12 de Carreador de Soluto , Simportadores/genética , Água
10.
Diabetes ; 70(11): 2639-2651, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34376476

RESUMO

Foot process effacement is an important feature of early diabetic nephropathy (DN), which is closely related to the development of albuminuria. Under certain nephrotic conditions, the integrity and function of the glomerular slit diaphragm (SD) structure were impaired and replaced by the tight junction (TJ) structure, resulting in so-called SD-TJ transition, which could partially explain the effacement of foot processes at the molecular level. However, the mechanism underlying the SD-TJ transition has not been described in DN. Here, we demonstrated that impaired autophagic flux blocked p62-mediated degradation of ZO-1 (TJ protein) and promoted podocytes injury via activation of caspase3 and caspase8. Interestingly, the expression of VDR in podocytes was decreased under diabetes conditions, which impaired autophagic flux through downregulating Atg3. Of note, we also found that VDR abundance was negatively associated with impaired autophagic flux and SD-TJ transition in the glomeruli from human renal biopsy samples with DN. Furthermore, VDR activation improved autophagic flux and attenuated SD-TJ transition in the glomeruli of diabetic animal models. In conclusion, our data provided the novel insight that VDR/Atg3 axis deficiency resulted in SD-TJ transition and foot processes effacement via blocking the p62-mediated autophagy pathway in DN.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia/fisiologia , Nefropatias Diabéticas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores de Calcitriol/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Animais , Proteínas Relacionadas à Autofagia/genética , Conservadores da Densidade Óssea/farmacologia , Caspase 3/genética , Caspase 3/metabolismo , Caspase 8/genética , Caspase 8/metabolismo , Células Cultivadas , Nefropatias Diabéticas/patologia , Regulação para Baixo , Ergocalciferóis/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Rim/citologia , Glomérulos Renais/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Podócitos/metabolismo , Proteínas de Ligação a RNA/genética , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Receptores de Calcitriol/agonistas , Receptores de Calcitriol/deficiência , Receptores de Calcitriol/genética , Junções Íntimas , Enzimas de Conjugação de Ubiquitina/genética , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo
11.
Am J Physiol Renal Physiol ; 321(2): F225-F235, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34229478

RESUMO

Oxygen homeostasis disturbances play a critical role in the pathogenesis of acute kidney injury (AKI). The transcription factor hypoxia-inducible factor-1 (HIF-1) is a master regulator of adaptive responses to hypoxia. Aside from posttranslational hydroxylation, the mechanism of HIF-1 regulation in AKI remains largely unclear. In this study, the mechanism of HIF-α regulation in AKI was investigated. We found that tubular HIF-1α expression significantly increased at the transcriptional level in ischemia-reperfusion-, unilateral ureteral obstruction-, and sepsis-induced AKI models, which was closely associated with macrophage-dependent inflammation. Meanwhile, NF-κB, which plays a central role in the inflammation response, was involved in the increasing expression of HIF-1α in AKI, as evidenced by pharmacological modulation (NF-κB inhibitor BAY11-7082). Mechanistically, NF-κB directly bound to the HIF-1α promoter and enhanced its transcription, which occurred not only under hypoxic conditions but also under normoxic conditions. Moreover, the induced HIF-1α by inflammation protected against tubular injury in AKI. Thus, our findings not only provide novel insights into HIF-1 regulation in AKI but also offer to understand the pathophysiology of kidney diseases.NEW & NOTEWORTHY Here, the mechanism of hypoxia-inducible factor-α (HIF-α) regulation in acute kidney injury (AKI) was investigated. We found that tubular HIF-1α expression significantly increased at the transcriptional level, which was closely associated with macrophage-dependent inflammation. Meanwhile, NF-κB was involved in the increasing expression of HIF-1α in AKI. Mechanistically, NF-κB directly bound to the HIF-1α promoter and enhanced its transcription. Our findings not only provide novel insights into HIF-1 regulation in AKI but also offer to understand the pathophysiology of kidney diseases.


Assuntos
Injúria Renal Aguda/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Rim/metabolismo , NF-kappa B/metabolismo , Injúria Renal Aguda/genética , Animais , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Inflamação/genética , Inflamação/metabolismo , Rim/efeitos dos fármacos , Camundongos , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , Nitrilas/farmacologia , Sulfonas/farmacologia
12.
Ren Fail ; 43(1): 556-565, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33757397

RESUMO

Aldosterone exerts an enormous function on proximal tubular cells (PTC) senescence, which is a common pathomechanism contributing to renal dysfunction. Numerous studies have shown that oxidative stress is deeply involved in the pathophysiologic processes of chronic kidney diseases. The study aims to investigate whether autophagy could regulate the process of senescence through oxidative stress in PTC both in vivo and ex vivo. Our results suggested that aldosterone treatment increased the senescence and oxidative stress as evidenced by increased percent of SA-ß-Gal positive cells, reactive oxygen species level, expression of NADPH oxidase 4 (NOX4) rather than NOX2, and the up-regulation of p21 in cultured PTC. Furthermore, the alternation of the expression of p62 and LC3-II/LC3-I demonstrated that aldosterone treatment remarkably influenced autophagic flux. NOX4 siRNA treatment or autophagy induction with rapamycin reduced the oxidative stress and senescence in aldosterone-induced PTC. On the contrary, inhibition of autophagy with chloroquine worsened these changes. Similar results were further confirmed in vivo. Our results suggested that autophagy may become a realistic therapeutic strategy against aldosterone-induced PTC injury via improving oxidative stress.


Assuntos
Aldosterona/farmacologia , Autofagossomos/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Rim/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Aldosterona/administração & dosagem , Animais , Linhagem Celular , Células Cultivadas , Senescência Celular/fisiologia , Células Epiteliais/metabolismo , Humanos , Rim/citologia , Rim/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...